
Twist and Shout via logup*

Georg Wiese
Powdr Labs

georg@powdrlabs.com

October 30, 2025

Abstract

We explore how to bring the Twist and Shout memory checking arguments to hash-based
proof systems by leveraging logup*. Twist and Shout significantly reduce commitment costs for
memory checking, especially for small memories. However, they rely on efficient commitments to
sparse polynomials, which is challenging for hash-based schemes. We show that using ideas from
logup*, these protocols can be adapted to work efficiently in the hash-based setting, enabling
cheaper lookups for large tables and low-cost read/write memory arguments. The core insight
is that there is an implicit commitment scheme for matrices with one-hot rows in logup*, which
can be plugged into Twist and Shout with minor modifications.

1 Introduction

Twist and Shout [5] are recent memory checking arguments. Shout is an indexed lookup argument,
or — equivalently — a read-only memory argument. Twist is a read/write memory argument
which significantly reduces commitment costs compared to arguments based on offline memory
checking [1], as used in zkVMs such as OpenVM1 and SP12. This is especially true for small
memories, for example RISC-V registers. Both protocols rely on being able to commit to sparse
polynomials efficiently, which is the case for commitment schemes based on elliptic curves, but not
for hash-based commitment schemes.

Logup* [6] is also a recent read-only memory argument with similar properties to Shout. In
particular, the prover only needs to commit to values once, not once for every memory access. Since
it requires the prover to commit to extra data proportional to the table size, it is most efficient for
small tables.

In this work, we show how to combine Twist and Shout with techniques from logup*. The
resulting read-only memory argument has lower commitment costs than logup* alone when the
memory is large. The resulting read/write memory argument has significantly lower commitment
costs than prior techniques based on offline memory checking, especially for small memories.

2 Notation and Preliminaries

Given a field F, we denote by Fext its cryptographically large extension field. Given a matrix
M ∈ Fn×m, we denote by M̃ : Flog(n) × Flog(m) → F its multilinear extension, i.e.:

1https://github.com/openvm-org/openvm
2https://github.com/succinctlabs/sp1

1

https://github.com/openvm-org/openvm
https://github.com/succinctlabs/sp1

M̃(xrow, xcol) =

n−1∑
i=0

m−1∑
j=0

M [i, j] · ẽq(bits(i), xrow) · ẽq(bits(j), xcol) (1)

where bits : N0 → Flog(n) is the function that maps a natural number to its binary representa-
tion and ẽq is the multilinear extension of the equality function, defined as:

ẽq(a0, . . . , ak−1, b0, . . . , bk−1) =

k−1∏
i=0

(ai · bi + (1− ai) · (1− bi)) (2)

As a special case, for a vector v ∈ Fn, we denote its multilinear extension by ṽ : Flog(n) → F.
We will often use the notation of vectors and matrices and mean their multilinear extensions. In
particular, when we talk about committing to a matrix or vector, we mean committing to the
polynomial given by its multilinear extension.

Many interactive protocols involving multilinear extensions are built on top of the sum-check
protocol [3]. For a multivariate polynomial f(x1, . . . , xk), the sum-check protocol allows the prover
to convince the verifier of the value of:

s :=
∑

(b1,...,bk)∈{0,1}k
f(b1, . . . , bk) (3)

At the end of the protocol, the verifier is left with a claim for f(r1, . . . , rk) for random ri ∈ Fext.
This claim can be checked by the verifier either by evaluating f directly (e.g., if f is known
in advance and there exists an algorithm to evaluate it in logarithmic time), via a polynomial
commitment scheme, or by invoking another protocol.

3 Logup* and the pushforward

Logup* [6] is an indexed lookup argument. Its main improvement over [4] is that the prover does
not have to commit to polynomials encoding the looked-up values. Instead, whenever the verifier
wishes to evaluate these polynomials, the prover and verifier engage in a protocol that forces the
prover (w.h.p.) to send the correct evaluation. We refer to such polynomials as virtual polynomials.

A crucial component of logup* is the notion of a pushforward. Given a vector A ∈ Fn and a
mapping I : {0, . . . , n − 1} → {0, . . . ,m − 1}, the pushforward I∗A ∈ Fm is a vector defined as
follows:

I∗A[j] =
∑

i|I[i]=j

A[i] (4)

Well-formedness of a pushforward can be proven using the GKR protocol [2], using an argument
similar to [4]. This subprotocol is not presented in detail here. We refer to Section 4 of [6].

Logup* asks the prover to commit to I∗eqr where I indicates the indices and eqr ∈ Fn
ext is the

vector of the n Lagrange polynomials evaluated at point r ∈ Flog(n)
ext , i.e., eqr[i] = ẽq(bits(i), r).

That is, I∗eqr is a vector of m extension field elements. In cases where n ≫ m, the commitment
cost is significantly reduced compared to [4]. For the full protocol, we refer to [6].

2

4 Committing to matrices with one-hot rows

Consider a matrix M ∈ Fn×m such that exactly one entry in each row is 1 and all other entries
are 0. Let Mdense ∈ Fn be a vector of field elements indicating the nonzero index for each row. We
present a protocol to evaluate M̃ given oracle access to M̃dense.

Let P := Mdense∗eqrrow ∈ Fm
ext. We claim that:

M̃(rrow, rcol) = P̃ (rcol) (5)

This follows from the definition of the pushforward, eqrrow and Mdense:

P̃ (rcol) = ⟨P, eqrcol⟩

=
m−1∑
j=0

P [j] · ẽq(bits(j), rcol)

=

m−1∑
j=0

(
∑

i|Mdense[i]=j

ẽq(bits(i), rrow)) · ẽq(bits(j), rcol)

=
∑

(i,j)|M [i,j]=1

ẽq(bits(i), rrow) · ẽq(bits(j), rcol)

=
∑

(i,j)|M [i,j]=1

ẽq(bits(i) || bits(j), rrow || rcol)

= M̃(rrow, rcol)

This provides a commitment scheme for matrices with one-hot rows:

1. Instead of committing to M ∈ Fn×m, the prover commits to the multilinear extension of
Mdense ∈ Fn using a standard multilinear polynomial commitment scheme.

2. To evaluate M̃ at (rrow, rcol), the prover and verifier run the protocol from Figure 1.

4.1 Batching pushforward commitments

The commitment costs for opening multiple multilinear extensions of matrices with one-hot rows

can be reduced by batching. For 1 ≤ i ≤ d, let M
(i)
dense ∈ Fn be the dense encoding of the i-th

matrix M (i) ∈ Fn×m with one-hot rows. For simplicity, we assume that d is a power of two. Let

M
(∗)
dense := M

(1)
dense || · · · ||M

(d)
dense ∈ Fn·d be the concatenation. Note that its multilinear extension

M̃
(∗)
dense can be evaluated efficiently given oracle access to M̃

(i)
dense for 1 ≤ i ≤ d.

M
(∗)
dense describes a matrix M (∗) ∈ Fn·d×m which is the concatenation of the original matrices

along the row dimension. The key observation is that M̃ (i)(xrow, xcol) = M̃ (∗)(xrow, bits(i), xcol).

Therefore, d claims for M̃ (i) are equivalent to d claims for M̃ (∗).

To validate evaluation claims M̃ (i)(r
(i)
row, r

(i)
col) = M̃ (∗)(r

(i)
row, bits(i), r

(i)
col) (for 1 ≤ i ≤ d), the

prover and verifier run the following protocol:

1. Using a standard technique (e.g., [7], section 4.5.2), the d claims about M̃ (∗) are reduced to

a single claim at an evaluation point r ∈ Flog(n)+log(d)+log(m)
ext .

3

Commitment Scheme for matrices with one-hot rows (opening protocol)

Input: Commitment to Mdense ∈ Fn encoding a matrix with one-hot rows M ∈ Fn×m

and evaluation points rrow ∈ Flog(n)
ext , rcol ∈ Flog(m)

ext .

Output: M̃(rrow, rcol) ∈ Fext.

Protocol:

1. Let P = Mdense∗eqrrow ∈ Fm
ext be the pushforward eqrrow along Mdense.

2. Prover sends a commitment to P̃ and a claimed value for P̃ (rcol).

3. Prover and verifier run the GKR protocol to prove well-formedness of P (Section 4

of [6]). This results in prover claims for P̃ (r1), ẽq(r2, rrow), and M̃dense(r3).

4. The verifier evaluates ẽq(r2, rrow) in logarithmic time; claims for P̃ and M̃dense are
verified via the polynomial commitments.

Figure 1: Protocol for evaluating the multilinear extension of a matrix M ∈ Fn×m with one-hot

rows at a random point (rrow, rcol) ∈ Flog(n)
ext × Flog(m)

ext , using a commitment to the dense encoding
Mdense ∈ Fn. This commitment scheme is implicit in logup* [6] and builds upon its subprotocol to
prove well-formedness of a pushforward.

2. The single claim is verified using the algorithm from Figure 1. As a slight modification, there

is no commitment to M̃
(∗)
dense. Instead, the verifier reduces its evaluation to queries to M̃

(i)
dense

for 1 ≤ i ≤ d and asks the prover to open the corresponding commitments.

As part of step 2, the prover commits to a single pushforward P ∈ Fm
ext, reducing the commit-

ment cost by a factor of d over the naive approach of running the opening protocol d times.

5 Twist and Shout via logup*

In this section, we show how to adapt Shout and Twist using the commitment scheme extracted
from logup* (Section 4). Both Twist and Shout are built around matrices with one-hot rows. In
the original protocols, these matrices are committed to using commitment schemes based on elliptic
curves, which allow for efficient commitments to sparse polynomials. Furthermore, [5] provides a
subprotocol to prove the one-hot property of these matrices.

We propose instead to use the commitment scheme from Section 4.

5.1 Shout via logup*

Shout is a read-only memory checking argument. Let K be the memory size and T the number of
memory accesses. In essence, the protocol combines two insights:

• If memory addresses are encoded as matrices with one-hot rows, then the vector of read values
can be expressed as a matrix-vector product between the T -by-K address matrix and the K-
dimensional memory value vector. The vector of read values can be virtual and evaluated
using sum-checks.

4

• For large memories, the address one-hot vectors can be decomposed into d smaller one-hot
vectors of dimension d

√
K, allowing for more efficient commitment openings and smaller sum-

checks.

The protocol is best summarized in Figure 7 of [5]. The only commitments required are to the d

address matrices with one-hot rows ra(i) ∈ FT× d√K and to the memory values Val ∈ FK . We adapt

Shout to hash-based commitment schemes by committing to the dense address vectors ra
(i)
dense ∈ FT

and using the batched opening protocol from Section 4.1 to evaluate r̃a(i).
We obtain a read-only memory argument with the following commitment costs:

• d read address vectors ra
(i)
dense ∈ FT .

• the memory content vector Val ∈ FK .

• one batched pushforward P ∈ F
d√K
ext

Note how for d = 1, the commitments are the same as if logup* was used directly to implement
the read-only memory argument. For larger memories, setting d > 1 significantly reduces the
pushforward commitment cost from K to d

√
K extension field elements.

5.2 Twist via logup*

Twist extends Shout to handle read/write memory. The prover commits to the following matrices
and vectors:

• Inc : FT×K : The sparse matrix (at most T nonzero entries) indicating how each memory cell
is incremented in each cycle.

• wv : FT : The value written in each cycle.

• ra(i) : FT× d√K (for 1 ≤ i ≤ d): Sparse matrices (T nonzero entries) indicating the read
address, just like in Shout.

• wa(i) : FT× d√K (for 1 ≤ i ≤ d): Sparse matrices (T nonzero entries); like ra(i) but indicating
the write address.

The protocol is best summarized in Figure 9 of [5]. As in Shout, ra(i) and wa(i) are matrices
with one-hot rows. The commitment scheme from Section 4 is directly applicable.

For Inc, the scheme is not directly applicable: Even though it is also a matrix with at most one
non-zero entry per row, the value of that entry could be any field element. However, for an honest
prover, the position of that entry is the same as in the one-hot encoding of the write address.
Therefore, instead of committing to Inc ∈ FT×K , the prover commits to a vector Incval ∈ FT

containing only the value of the increment. The following sum-check can be used to evaluate Ĩnc:

Ĩnc(r
(1)
address, . . . , r

(d)
address, rcycle) =

∑
j∈{0,1}log(T)

ẽq(j, rcycle) · Ĩncval(j) · (
d∏

i=1

w̃a(i)(r
(i)
address, j)) (6)

Handling Inc by committing to a dense version, it becomes clear that wv could actually be
virtual, saving the commitment cost: Similar to how Twist already uses virtual read values, the
value of the written cell before the write can be obtained as a virtual polynomial via an analogous

5

read-checking sum-check using wa(i). By adding Incval, we obtain a virtual polynomial w̃v. This
optimization has been confirmed by the authors3.

Using batching, we obtain a read/write memory argument with the following commitment costs:

• d read address vectors ra
(i)
dense ∈ FT .

• d write address vectors wa
(i)
dense ∈ FT .

• the increment vector Incval ∈ FT .

• one batched pushforward P ∈ F
d√K
ext for the read and write addresses.

Note that in the context of zkVMs, K might be very small. For instance, for RISC-V registers,
K = 32. In this case, even for d = 1, the commitment cost for the pushforwards is likely negligible.

6 Conclusion

We have shown how to apply techniques from logup* to implement Twist and Shout in hash-based
proof systems. The main observation is that the one-hot commitment scheme implicit in logup*
can be used to commit to the address matrices with one-hot rows required by Twist and Shout.
This enables improvements in zkVMs built on top of hash-based multilinear commitment schemes:

• Shout provides a cheap indexed lookup argument. Compared to using logup* directly, it is
also applicable for large tables.

• Twist provides a cheap read/write memory argument. Compared to techniques based on
offline memory checking, commitment cost is significantly reduced.

Acknowledgements

We thank Jonathan Wang for prompting this work by suggesting that one-hot vectors could be
looked up via logup* and for his insightful feedback. We also thank Justin Thaler for confirming
the optimization regarding the write values in Twist, and Quang Dao for raising the question of
batching. Finally, we thank Shuang Wu for helpful discussions and Leonardo Alt for proofreading.

References

[1] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the
correctness of memories. Algorithmica, 12(2):225–244, 1994.

[2] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: inter-
active proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

[3] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for inter-
active proof systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

[4] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using GKR. Cryp-
tology ePrint Archive, Paper 2023/1284, 2023.

3A description of this optimization can be found at: https://jolt.a16zcrypto.com/how/twist-shout.html#

wv-virtualization

6

https://jolt.a16zcrypto.com/how/twist-shout.html#wv-virtualization
https://jolt.a16zcrypto.com/how/twist-shout.html#wv-virtualization

[5] Srinath Setty and Justin Thaler. Twist and shout: Faster memory checking arguments via
one-hot addressing and increments. Cryptology ePrint Archive, Paper 2025/105, 2025.

[6] Lev Soukhanov. Logup*: faster, cheaper logup argument for small-table indexed lookups.
Cryptology ePrint Archive, Paper 2025/946, 2025.

[7] Justin Thaler et al. Proofs, arguments, and zero-knowledge. Foundations and Trends® in
Privacy and Security, 4(2–4):117–660, 2022.

7

	Introduction
	Notation and Preliminaries
	Logup* and the pushforward
	Committing to matrices with one-hot rows
	Batching pushforward commitments

	Twist and Shout via logup*
	Shout via logup*
	Twist via logup*

	Conclusion

